3.336 \(\int \frac{\cot (e+f x)}{(a+b \tan ^2(e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=106 \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )}{a^{3/2} f}-\frac{b}{a f (a-b) \sqrt{a+b \tan ^2(e+f x)}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )}{f (a-b)^{3/2}} \]

[Out]

-(ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]]/(a^(3/2)*f)) + ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a - b]]/(
(a - b)^(3/2)*f) - b/(a*(a - b)*f*Sqrt[a + b*Tan[e + f*x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.149207, antiderivative size = 106, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {3670, 446, 85, 156, 63, 208} \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )}{a^{3/2} f}-\frac{b}{a f (a-b) \sqrt{a+b \tan ^2(e+f x)}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )}{f (a-b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]/(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

-(ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a]]/(a^(3/2)*f)) + ArcTanh[Sqrt[a + b*Tan[e + f*x]^2]/Sqrt[a - b]]/(
(a - b)^(3/2)*f) - b/(a*(a - b)*f*Sqrt[a + b*Tan[e + f*x]^2])

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 85

Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[(f*(e + f*x)^(p +
 1))/((p + 1)*(b*e - a*f)*(d*e - c*f)), x] + Dist[1/((b*e - a*f)*(d*e - c*f)), Int[((b*d*e - b*c*f - a*d*f - b
*d*f*x)*(e + f*x)^(p + 1))/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[p, -1]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cot (e+f x)}{\left (a+b \tan ^2(e+f x)\right )^{3/2}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{x \left (1+x^2\right ) \left (a+b x^2\right )^{3/2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{x (1+x) (a+b x)^{3/2}} \, dx,x,\tan ^2(e+f x)\right )}{2 f}\\ &=-\frac{b}{a (a-b) f \sqrt{a+b \tan ^2(e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{a-b-b x}{x (1+x) \sqrt{a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{2 a (a-b) f}\\ &=-\frac{b}{a (a-b) f \sqrt{a+b \tan ^2(e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{2 a f}-\frac{\operatorname{Subst}\left (\int \frac{1}{(1+x) \sqrt{a+b x}} \, dx,x,\tan ^2(e+f x)\right )}{2 (a-b) f}\\ &=-\frac{b}{a (a-b) f \sqrt{a+b \tan ^2(e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan ^2(e+f x)}\right )}{a b f}-\frac{\operatorname{Subst}\left (\int \frac{1}{1-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan ^2(e+f x)}\right )}{(a-b) b f}\\ &=-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a}}\right )}{a^{3/2} f}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan ^2(e+f x)}}{\sqrt{a-b}}\right )}{(a-b)^{3/2} f}-\frac{b}{a (a-b) f \sqrt{a+b \tan ^2(e+f x)}}\\ \end{align*}

Mathematica [C]  time = 0.132571, size = 91, normalized size = 0.86 \[ \frac{(a-b) \text{Hypergeometric2F1}\left (-\frac{1}{2},1,\frac{1}{2},\frac{b \tan ^2(e+f x)}{a}+1\right )-a \text{Hypergeometric2F1}\left (-\frac{1}{2},1,\frac{1}{2},\frac{a+b \tan ^2(e+f x)}{a-b}\right )}{a f (a-b) \sqrt{a+b \tan ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]/(a + b*Tan[e + f*x]^2)^(3/2),x]

[Out]

(-(a*Hypergeometric2F1[-1/2, 1, 1/2, (a + b*Tan[e + f*x]^2)/(a - b)]) + (a - b)*Hypergeometric2F1[-1/2, 1, 1/2
, 1 + (b*Tan[e + f*x]^2)/a])/(a*(a - b)*f*Sqrt[a + b*Tan[e + f*x]^2])

________________________________________________________________________________________

Maple [B]  time = 0.742, size = 32888, normalized size = 310.3 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)/(a+b*tan(f*x+e)^2)^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [B]  time = 2.25042, size = 2129, normalized size = 20.08 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[-1/2*((a^2*b*tan(f*x + e)^2 + a^3)*sqrt(a - b)*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a -
b) + 2*a - b)/(tan(f*x + e)^2 + 1)) - (a^3 - 2*a^2*b + a*b^2 + (a^2*b - 2*a*b^2 + b^3)*tan(f*x + e)^2)*sqrt(a)
*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a) + 2*a)/tan(f*x + e)^2) + 2*(a^2*b - a*b^2)*sqrt(
b*tan(f*x + e)^2 + a))/((a^4*b - 2*a^3*b^2 + a^2*b^3)*f*tan(f*x + e)^2 + (a^5 - 2*a^4*b + a^3*b^2)*f), 1/2*(2*
(a^2*b*tan(f*x + e)^2 + a^3)*sqrt(-a + b)*arctan(-sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b)/(a - b)) + (a^3 - 2*
a^2*b + a*b^2 + (a^2*b - 2*a*b^2 + b^3)*tan(f*x + e)^2)*sqrt(a)*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^
2 + a)*sqrt(a) + 2*a)/tan(f*x + e)^2) - 2*(a^2*b - a*b^2)*sqrt(b*tan(f*x + e)^2 + a))/((a^4*b - 2*a^3*b^2 + a^
2*b^3)*f*tan(f*x + e)^2 + (a^5 - 2*a^4*b + a^3*b^2)*f), 1/2*(2*(a^3 - 2*a^2*b + a*b^2 + (a^2*b - 2*a*b^2 + b^3
)*tan(f*x + e)^2)*sqrt(-a)*arctan(sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a)/a) - (a^2*b*tan(f*x + e)^2 + a^3)*sqrt(a
 - b)*log((b*tan(f*x + e)^2 - 2*sqrt(b*tan(f*x + e)^2 + a)*sqrt(a - b) + 2*a - b)/(tan(f*x + e)^2 + 1)) - 2*(a
^2*b - a*b^2)*sqrt(b*tan(f*x + e)^2 + a))/((a^4*b - 2*a^3*b^2 + a^2*b^3)*f*tan(f*x + e)^2 + (a^5 - 2*a^4*b + a
^3*b^2)*f), ((a^3 - 2*a^2*b + a*b^2 + (a^2*b - 2*a*b^2 + b^3)*tan(f*x + e)^2)*sqrt(-a)*arctan(sqrt(b*tan(f*x +
 e)^2 + a)*sqrt(-a)/a) + (a^2*b*tan(f*x + e)^2 + a^3)*sqrt(-a + b)*arctan(-sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a
+ b)/(a - b)) - (a^2*b - a*b^2)*sqrt(b*tan(f*x + e)^2 + a))/((a^4*b - 2*a^3*b^2 + a^2*b^3)*f*tan(f*x + e)^2 +
(a^5 - 2*a^4*b + a^3*b^2)*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot{\left (e + f x \right )}}{\left (a + b \tan ^{2}{\left (e + f x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a+b*tan(f*x+e)**2)**(3/2),x)

[Out]

Integral(cot(e + f*x)/(a + b*tan(e + f*x)**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot \left (f x + e\right )}{{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a+b*tan(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate(cot(f*x + e)/(b*tan(f*x + e)^2 + a)^(3/2), x)